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1. INTRODUCTION

My lectures at the Minicorsi di Analisi Matematica at Padova in June
2000 are written up in these notes1. They are an updated and extended
version of my lectures [37] at Jyväskylä in October 1994. In particular,
an account of the exciting recent development of the asymptotic case
is included, which is called the ∞-eigenvalue problem. I wish to thank
the University of Padova for financial support. I am especially grateful
to Massimo Lanza de Cristoforis for his kind assistance. I thank Harald
Hanche-Olsen for his kind help with final adjustments of the typesetting.

These lectures are about a nonlinear eigenvalue problem that has a
serious claim to be the right generalization of the linear case. By now
I have lectured on four continents about this theme and my reason for
sticking to this seemingly very peculiar problem is twofold. First, one
can study the interesting questions without any previous knowledge of
spectral theory. Second, to the best of my knowledge there are many
open problems easy to state. The higher eigenvalues are “mysterious”.

The leading example of a linear eigenvalue problem is to find all non-
trivial solutions of the equation ∆u+ λu = 0 with boundary values zero
in a given bounded domain in Rn. This is the Dirichlet boundary value
problem. (In the Neumann boundary value problem the normal deriva-
tive is zero at the boundary.) Needless to say, this has been generalized
in numerous ways: to Riemann surfaces and manifolds, to equations
∆u + λu + V u = 0 with a potential V , to more general differential
operators than the Laplacian, and so on.

1A short comment on the uniqueness proof in [11] has been added later.
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However, when talking about nonlinear eigenvalue problems, there is
seldom any eigenvalue at all involved. For example, one just considers
the existence of positive solutions. The extremely popular and very
interesting Emden-Fowler equation

∆u + |u|α−1 u = 0

is of this type. If α 6= 1, the parameter λ plays no role in the equation
∆u + λ |u|α−1 u = 0, since it can be scaled out: multiply u by a suitable
constant to see this. In equations of the type

∆u + λu + |u|α−1 u = 0

the parameter λ is stabilizing, when the exponent α is critical. Though
interesting as they are, I will not consider these problems here. I refer to
Professor Donato Passaseo’s lectures about Nonlinear Elliptic Equations

Involving Critical Sobolev Exponents.
My objective is the nonlinear eigenvalue problem

(1.1) div(|∇u|p−2 ∇u) + λ |u|p−2 u = 0

with u = 0 on the boundary of a bounded domain Ω in the n-dimensional
Euclidean space. Here 1 < p < ∞ and for p = 2 we are back to the linear
case ∆u + λu = 0. Note that

(1.2) λ =

∫

Ω

|∇u|p dx

∫

Ω

|u|p dx
,

if u is a solution, not identically zero. (Here dx = dx1 dx2 · · · dxn is
the Lebesgue measure.) Thus it appears that λ > 0. Minimizing this
so called nonlinear Rayleigh quotient among all admissible functions we
arrive at Eqn (1.1) as the corresponding Euler-Lagrange equation. The
first one to study it in any serious way seems to have been F. de Thélin
in 1984, cf. [51]. The so-called p-harmonic operator div

(

|∇u|p−2 ∇u
)

appears in many contexts in physics: non-Newtonian fluids, reaction-
diffusion problems, non-linear elasticity, and glaceology, just to mention
a few applications.

The range of p in the p-harmonic operator

∆pu = div(|∇u|p−2∇u)

= |∇u|p−4

{

|∇u|2∆u + (p − 2)
∑ ∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

}

is usually 1 ≤ p ≤ ∞. The case p = 1 is the mean curvature operator
(with a minus sign)

H = −∆1u = − div

( ∇u

|∇u|

)



A nonlinear eigenvalue problem 175

and the fascinating asymptotic case p = ∞ is related to the operator

∆∞u =
n

∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
.

In Section 6 the theory of viscosity solutions is used to treat the latter
case. An amazing “differential equation” replaces (1.1). Arcane phe-
nomena occur.

Many results are readily extended to equations of the more general
form

n
∑

i,j=1

∂

∂xi









∣

∣

∣

∣

∣

∣

n
∑

k,m=1

akm(x)
∂u

∂xk

∂u

∂xm

∣

∣

∣

∣

∣

∣

p−2
2

aij(x)
∂u

∂xj









+ λρ(x) |u|p−2 u = 0

where the matrix (akm) satisfies the ellipticity condition

n
∑

i,j=1

aij(x)ξiξj ≥ |ξ|2

for all ξ = (ξ1, ξ2, . . . , ξn), and, by assumption, ρ(x) ≥ ε > 0. The
weaker restriction ρ(x) ≥ 0 leads to considerable technical difficulties,
not to mention the case when the density ρ(x) is allowed to change signs.
See [54]. It is likely that the theory works, when (akm) is a Muckenhoupt
weight. The essential feature here is that solutions may be multiplied by

constants. Indeed, among all the equations

div
(

|∇u|p−2 ∇u
)

+ λ |u|s−2 u = 0

only the homogeneous case s = p has the proper structure of a “typical
eigenvalue problem”, to quote an expression in [5].

In passing, I mention that the density ρ(x) in the equation

div(|∇u|p−2∇u) + λρ(x)|u|p−2u = 0

is very decisive. Indeed, if we take ρ(x)−p to be the distance function

δ(x) = dist(x, ∂Ω) in a convex domain Ω, then there is no eigenfunction
at all: 0 is the only solution. Moreover, the sharp lower bound in the
inequality (“Hardy’s inequality”).

(

1 − 1

p

)p
<

∫

Ω |∇ϕ|pdx
∫

Ω

∣

∣

ϕ
δ

∣

∣

p
dx

, ϕ ∈ C∞
0 (Ω),

is not attained for any admissible function, if Ω is convex. It is curi-
ous that this sharp bound depends only on p. This phenomenon was
observed by S. Agmon. See [40].
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The reader who wants to learn this topic does well in reading the first
volume of the celebrated book by Courant & Hilbert and, perhaps, the
book by Polya & Szegö, before passing on to so called modern expositions
like [9] and [50]. The lecture [32] by E. Lieb is very illuminating. See [12]
about spectral theory on manifolds. About elliptic partial differential
equations we refer to the books [24], [30], and [23]. See also [19]. The
book Metodi diretti nel calculo variazioni by E. Giusti is an excellent
source of information.

Note added in proof. The reference E. Lieb [31] has come to my
attention. It contains an interesting result about the minimum of the
nonlinear Rayleigh quotient. Thus it appears that E. Lieb was the first
one to study the nonlinear eigenvalue problem in several variables.

2. PRELIMINARY RESULTS

Throughout these lectures Ω will denote a bounded domain in Rn.
For most of the theorems no regularity assumptions are needed about
the boundary ∂Ω. The equation will be interpreted in the weak sense.

Definition 1 We say that u ∈ W 1,p
0 (Ω) , u 6≡ 0, is an eigenfunction,

if

(2.1)

∫

Ω

|∇u|p−2 ∇u · ∇η dx = λ

∫

Ω

|u|p−2 uη dx

whenever η ∈ C∞
0 (Ω). The corresponding real number λ is called an

eigenvalue.

The Sobolev space W 1,p
0 (Ω) is the completion of C∞

0 (Ω) with respect
to the norm

‖ϕ‖ =







∫

Ω

(|ϕ|p + |∇ϕ|p) dx







1
p

.

As usual, C∞
0 (Ω) is the class of smooth functions with compact support

in Ω. By standard elliptic regularity theory an eigenfunction is contin-

uous, i.e., it can be made continuous after a modification in a set of
measure zero. See for example [23], [24], [30]. Indeed, even the gradient

∇u is locally Hölder continuous, the Hölder exponent depending only on
n and p. See [17] or [53] for this deep regularity result, the first proof of
which is credited to N. Uraltseva.

In regular domains the boundary value zero is attained in the classical

sense. For example, any domain satisfying an exterior cone condition is
surely regular enough. As a matter of fact, the regular boundary points
can be characterized by a version of the celebrated Wiener criterion,
formulated by Mazj’a [39] in a nonlinear setting. See [22] and [29]. It is
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known that those boundary points ξ where the requirement

lim
x→ξ

u(x) = 0

fails is a set of p-capacity zero. That is to say that the irregular boundary
points form a very small set. If p > n, then every boundary point is
regular!

It is not difficult to see that every eigenvalue λ is positive. Indeed, by
approximation, u itself will do as test-function in (2.1). Therefore

λ =

∫

Ω

|∇u|p dx

∫

Ω

|u|p dx
.

It is useful to have an explicit lower bound. The familiar Sobolev in-
equality ‖u‖np/(n−p) ≤ C‖∇u‖p, where C = C(n, p) and 1 < p < n,
implies

(2.2) λ ≥ 1

Cp |Ω|p/n
.

This lower bound for the eigenvalues is valid also for p ≥ n. It is in-
structive to prove it directly. Suppose that ϕ ∈ C∞

0 (Ω) where Ω is the
parallelepiped 0 < x1 < a1, 0 < x2 < a2, . . . , 0 < xn < an. Then

ϕ(x1, x2, . . . , xn) =

x1
∫

0

dϕ(t, x2, . . . , xn)

dt
dt,

|ϕ(x1, x2, . . . , xn)|p ≤ xp−1
1

a1
∫

0

∣

∣

∣

∣

dϕ(t, x2, . . . , xn)

dt

∣

∣

∣

∣

p

dt,

a1
∫

0

|ϕ(x1, x2, . . . , xn)|p dx1 ≤ ap
1

p

a1
∫

0

|D1ϕ(t, x2, . . . , xn)|p dt

and an integration with respect to the remaining variables x2, . . . , xn

gives the estimate

a1
∫

0

a2
∫

0

· · ·
an
∫

0

|ϕ(x1, x2, . . . , xn)|p dx1dx2 · · · dxn

≤ ap
1

p

a1
∫

0

a2
∫

0

· · ·
an
∫

0

|D1ϕ(x1, x2, . . . , xn)|p dx1dx2 · · · dxn.
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Therefore

(2.3)

∫

Ω

|∇ϕ|p dx

∫

Ω

|ϕ|p dx

≥ p

ap
1

.

We only used the fact that ϕ(0, x2, . . . , xn) ≡ 0. (Since also

ϕ(a1, x2, . . . , xn) = 0

we can readily improve the lower bound a little, replacing a1 by a1/2.)
Note that we may write a2, a3 . . . , or an instead of a1. The shortest side
yields the best estimate.

Essentially the same reasoning can be used to prove the estimate

λ ≥ Const.

Rp

in a regular domain, R denoting the radius of the largest inscribed ball
in the smallest “box” containing Ω. This means that the eigenvalues are
large even in very long, yet narrow domains. See [41] in the linear case.

The Harnack inequality: If u is a non-negative eigenfunction, then

max
Br

u ≤ C min
Br

u

whenever B2r ⊂ Ω. Here Br and B2r are concentric balls of radii r
and 2r. The constant C depends only on n and p. This result is due
to Trudinger [55], who proved it in 1967 using the celebrated Moser
iteration. The inequality implies that, if u ≥ 0 in Ω, then u > 0. As
we will see in Section 4, a positive eigenfunction must correspond to the
smallest eigenvalue

(2.4) λ1 = inf
ϕ

∫

Ω

|∇ϕ|p dx

∫

Ω

|ϕ|p dx

where the infimum is taken over all ϕ ∈ C∞
0 (Ω), ϕ 6≡ 0. By standard

compactness arguments it is easily seen that the infimum is attained
for a function u in W 1,p

0 (Ω). But, if u is minimizing, so is |u|. By the
Harnack inequality |u| > 0. By continuity, either u > 0 in Ω or u < 0 in
Ω. Hence a first eigenfunction does not change signs.

To prove existence, the following slightly simplified version of the
Rellich-Kondrachov theorem is useful.

Lemma 2 (Rellich–Kondrachov) Let p > 1. Suppose that u1, u2, . . .

are functions in W 1,p
0 (Ω) and that ‖∇uk‖p,Ω ≤ L < ∞, when k =
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1, 2, 3, . . .. Then there is a function u ∈ W 1,p
0 (Ω) such that ukj

→ u
strongly in Lp (Ω) and ∇ukj

⇀ ∇u weakly in Lp (Ω) for some subse-

quence.

Proof: This is a combination of the weak compactness of Lp and the
Rellich-Kondrachov imbedding theorem. See [49, §11, pp. 82-85] or [57,
Theorem 2.5.1, p. 62]. As a matter of fact, the convergence is better
than we have stated. 2

We end this section by proving two results. First, the spectrum is a
closed set. This fact would properly belong to Section 5. Second, we
bound the eigenfunctions. This fact is needed in Section 4.

Theorem 3 The spectrum is a closed set.

Proof: Suppose that a sequence λ1, λ2, . . . of eigenvalues converges to
λ 6= ∞ and let u1, u2, . . . denote the eigenfunctions, normalized by the
condition ‖uk‖p,Ω = 1. We have

(2.5)

∫

Ω

|∇uk|p−2 ∇uk · ∇η dx = λk

∫

Ω

|uk|p−2 ukη dx

for each η ∈ C∞
0 (Ω). We claim that λ is an eigenvalue. By the normal-

ization

λk =

∫

Ω

|∇uk|p dx.

By the Rellich-Kondrachov Theorem there is a subsequence and a func-
tion u ∈ W 1,p

0 (Ω) such that ukj
→ u strongly in Lp (Ω) and ∇ukj

⇀ ∇u
weakly in Lp (Ω). We have to prove that this u is the eigenfunction
corresponding to λ. By the equation itself we have

∫

Ω

[

∣

∣∇ukj

∣

∣

p−2 ∇ukj
− |∇u|p−2 ∇u

]

· ∇ (uk − u) dx

= λkj

∫

Ω

∣

∣ukj

∣

∣

p−2
ukj

(

ukj
− u

)

dx −
∫

Ω

|∇u|p−2 ∇u ·
(

∇ukj
−∇u

)

dx.

The first integral on the right-hand side approaches zero, because of the
convergence ‖ukj

− u‖p,Ω → 0, and so does the second integral by the
weak convergence of the gradients. Therefore we have obtained that

lim
j→∞

∫

Ω

[

∣

∣∇ukj

∣

∣

p−2 ∇ukj
− |∇u|p−2 ∇u

]

·
[

∇ukj
−∇u

]

dx = 0.

The elementary inequality

21−p |w2 − w1|p ≤
[

|w2|p−2 w2 − |w1|p−2 w1

]

· (w2 − w1) , p ≥ 2,
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for vectors in Rn shows that the limit above implies the strong conver-
gence

lim
j→∞

∫

Ω

∣

∣∇ukj
−∇u

∣

∣

p
dx = 0.

There is a similar inequality for p < 2. Thus we can pass to the limit
under the integral sign in (2.5) to obtain

∫

Ω

|∇u|p−2 ∇u · ∇ηdx = λ

∫

Ω

|u|p−2 uηdx.

This shows that λ is an eigenvalue, since the normalization prevents u
from being identically zero. 2

It is evident that an eigenfunction is bounded in a regular domain.
But there are continuous functions in the Sololev space W 1,p

0 (Ω) that
are unbounded. Therefore we had better write down a proof of

sup
x∈Ω

|u(x)| < ∞.

Lemma 4 The bound

(2.6) ‖u‖∞,Ω ≤ 4nλ
n
p ‖u‖1,Ω

holds for the eigenfunction u in any bounded domain Ω in Rn.

Proof: The interesting method in [30, Lemma 5.1, p. 71] yields this
estimate. (The constant 4n is not optimal.) To this end, we may assume
that u is positive at some point. The function

η(x) = max {u(x) − k, 0}
will do as test-function in (2.1) and so we obtain

(2.7)

∫

Ak

|∇u|p dx = λ

∫

Ak

|u|p−2 u(u − k)dx

where
Ak = {x ∈ Ω|u(x) > k} .

Clearly k |Ak| ≤ ‖u‖1,Ω and |Ak| → 0 as k → ∞.
By the elementary inequality ap−1 ≤ 2p−1(a − k)p−1 + 2p−1kp−1 we

have

(2.8)

∫

Ak

up−1(u − k)dx ≤ 2p−1

∫

Ak

(u − k)pdx + 2p−1kp−1

∫

Ak

(u − k)dx.

The Sobolev inequality yields

(2.9)

∫

Ak

(u − k)pdx ≤
(

2−1 |Ak|
)

p
n

∫

Ak

|∇u|p dx,
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when applied to each component of the open set Ak. (The constant 1
2 is

not essential.)
Combining (2.7), (2.8), and (2.9) we arrive at

[

1 − 2p−2λ |Ak|
p
n

]

∫

Ak

(u − k)pdx ≤ 2p−2kp−1λ |Ak|
p
n

∫

Ak

(u − k)dx.

In the first factor 2p−2λ |Ak|
p
n ≤ 1

2 , when k ≥ k1 = 2n(p−1)/pλn/p‖u‖1.
Using the Hölder inequality and dividing out we finally obtain the esti-
mate

(2.10)

∫

Ak

(u − k)dx ≤ 2λ
1

p−1 k |Ak|1+
p

(p−1)n

for k ≥ k1. This is the inequality needed in [30, Lemma 5.1, p.71] to
bound ess supu.

Indeed, writing

f(k) =

∫

Ak

(u − k)dx =

∞
∫

k

|At| dt,

we have f ′(k) = − |Ak| and hence (2.10) can be restated as

f(k) ≤ 2λ
1

p−1 k
[

−f ′(k)
]1+ p

(p−1)n ,

when k ≥ k1. If f is positive in the interval [k1, k], then an integration
of the differential inequality leads to

k
ε

1+ε − k
ε

1+ε

1 ≤
[

2λ
1

p−1

] 1
1+ε

[

f(k1)
ε

1+ε − f(k)
ε

1+ε

]

where ε = p/(p − 1)n. Since f(k1) ≤ f(0) = ‖u‖1 and f(k) ≥ 0 on the
right-hand side, this clearly bounds k and hence f(k) is zero sooner or
later. The quantitative bound is seen to be

(2.11) k ≤ 21+
2n(p−1)

p λ
n
p ‖u‖1.

This means that f(k) = 0, if (2.11) is not fulfilled, i.e. ess supu is never
greater than the right-hand side.

To bound ess inf u, consider the function −u. 2

Let me mention a difficult question. Can an eigenfunction be zero
at all the points of an open subset of Ω? This is the problem of unique

continuation. Except for the first eigenfunction this seems to be an open
problem. Zero has a special status. No eigenfunction can have a constant
value different from zero in an open subdomain. This is evident from
the equation.



182

3. THE ONE-DIMENSIONAL CASE

In the case of one independent variable all the eigenvalues are ex-
plicitly known. This was first studied by Ôtani in connexion with the
determination of the best constant in some Sobolev type inequalities.
The equation is

(

∣

∣u′
∣

∣

p−2
u′

)′
+ λ |u|p−2 u = 0

where u = u(x), a ≤ x ≤ b, and u(a) = 0, u(b) = 0. The equation is
readily integrated and, via the first integral

|u′|p +
λ|u|p
p − 1

= Constant,

one arrives at the expression

λ(p) = (p − 1)







2

b − a

1
∫

0

dt

(1 − tp)1/p







p

for the first eigenvalue, cf. [42]. This is the minimum of the Rayleigh
quotient

b
∫

a
|u′(x)|p dx

b
∫

a
|u(x)|p dx

taken among all u ∈ C1[a, b] with u(a) = u(b) = 0. The expression for
λ(p) is easily evaluated and the result is

p
√

λ(p) =
2π p

√
p − 1

(b − a)p sin π
p

.

The rather striking result

p
√

λ(p) = q
√

λ(q),
1

p
+

1

q
= 1

can be read off for conjugated exponents p and q. In terms of Rayleigh
quotients

min
‖u′‖p

‖u‖p
= min

‖v′‖q

‖v‖q
,

1

p
+

1

q
= 1.

See [34].
The spectrum can be completely determined. The eigenvalues are

precisely
λ(p), 2pλ(p), 3pλ(p), . . . , kpλ(p), . . .

The eigenfunctions are obtained from the first one. Let u1 denote the
first eigenfunction in [0,1]. Extend it as an odd function to [−1, 0] and,
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then, periodically to the whole real axis, i.e., u1(x) = −u1(−x), u1(x +
2) = u1(x). The higher eigenfunctions are

uk(x) = u1(kx), k = 1, 2, 3, . . .

In the linear case we have the eigenvalue k2π2 corresponding to the
normalized eigenfunction

√
2 sin(kπx), k = 1, 2, 3, . . .

The spectrum is discrete in the one-dimensional case. The eigenvalues
are simple and the kth eigenfunction has k − 1 nodes (zeros inside the
interval) and k nodal intervals of equal length.

An example in [10] shows that the Fredholm alternative does not hold
for the equation

(|u′|p−2u′)′ + λ|u|p−2u = f(x)

in the nonlinear case p 6= 2. A solution can exist even if

〈u1, f〉 =

∫ 1

0
u1(x)f(x)dx 6= 0.

Some other orthogonality condition seems to be called for.

4. THE FIRST EIGENFUNCTION

The first eigenfunction (the Ground State) has many special proper-
ties. It is the only positive eigenfunction. The restriction of a higher

eigenfunction to a nodal domain is a first eigenfunction (with respect to
this smaller domain).

The first eigenvalue or the principal frequency is

(4.1) λ1 = inf
ϕ

∫

Ω

|∇ϕ|p dx

∫

Ω

|ϕ|p dx

where ϕ ∈ C∞
0 (Ω), ϕ 6≡ 0. By (2.2) λ1 > 0. Using a (normalized)

minimizing sequence ϕ1, ϕ2, . . . we obtain a function u1 ∈ W 1,p
0 (Ω) such

that

λ1 =

∫

Ω

|∇u1|p dx

∫

Ω

|u1|p dx
.

The compactness argument needed in the existence proof is provided by
the Rellich-Kondrachov Theorem. A well-known device due to Lagrange
shows that u1 is a weak solution to the equation

div
(

|∇u|p−2 ∇u
)

+ λ1 |u|p−2 u = 0.
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If u1 is minimizing, so is |u1| and therefore also |u1| satisfies the equation.
Since |u1| ≥ 0, we must have |u1| > 0 by Harnack’s inequality. By
continuity either u1 > 0 in Ω or u1 < 0 in Ω. We have established the
following result.

Lemma 5 There exists a positive eigenfunction corresponding to the

principal frequency λ1. This eigenfunction minimizes the Rayleigh quo-

tient among all functions in the Sobolev space W 1,p
0 (Ω). Moreover, a

minimizer is a first eigenfunction and does not change signs.

Some basic facts can easily be read off from the Rayleigh quotient.
First, if Ω1 ⊂ Ω2, then λ1 (Ω1) ≥ λ1 (Ω2), since there are more competing
functions in Ω2. Second, the quantity pλ(p)1/p increases with p. (The
notation λ1 = λ(p) indicates the dependence of p.)

Being a solution to Eqn (2.1), the eigenfunction shares many proper-
ties with solutions to more general quasilinear eigenvalue problems. But
here we would like to emphasize the following specific features:

I “Isoperimetric” property. Among all domains with the same
volume (area) the ball (the disc) has the smallest principal fre-
quency.2

II Concavity. For any bounded convex domain log u is concave, u
denoting a positive eigenfunction [48, Theorem 1].

III Uniqueness. The first eigenfunctions are essentially unique in
any bounded domain: given p, they are merely constant multiples
of each other. Moreover, they have no zeros in the domain and
they are the only eigenfunctions not changing sign.

IV Stability. For any bounded sufficiently regular domain the prin-
cipal frequency is continuous as a function of p. [35, Theorem 6.1].
3 In very irregular domains there is some anomaly.

V Superharmonicity. In a convex domain the first eigenfunction
is superharmonic, for p ≥ 2. (We mean that ”∆u ≤ 0”.)

VI Asymptotic formula. As p → ∞ we have

lim
p→+∞

p
√

λ(p) =
1

max
x∈Ω

dist(x, ∂Ω)

In other words, the reciprocal number of the radius of the largest
inscribed ball in the domain gives the principal frequency for the
case p = ∞!

2For the second eigenvalue there is a characterization in the linear case, cf [44].
3No similar result is known for the second eigenfunction.
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The uniqueness (III) for arbitrary bounded domains was first proved
in [33]. A new proof was found in [3]. Recently, an elegant variational
proof was found by Belloni and Kawohl, cf. [11]. The radial case has
been studied by F. de Thélin [52] and a good reference for C2-domains
is [48, Theorem A.1]. Other references for regular domains are [7], [6]
and [2]. As we said, the restriction of a higher eigenfunction to a nodal
domain is a first eigenfunction there. Though the original domain is as
regular as we please, it is not clear that this is inherited by the nodal
domains. Therefore it is important to prove the uniqueness in arbitrary
domains. The proof will be discussed below. The logarithmic concavity
4 mentioned in (II) is due to S. Sakaguchi [48], when p 6= 2, and the linear
case is credited to H. Brascamp & E. Lieb. The proof by Sakaguchi is
based on a convexity principle of N. Korevaar. The superharmonicity
(V) is a consequence of (II) and the formula

(p − 2)|∇u|3∆1u +
∆pu

|∇u|p−4
= (p − 1)|∇u|2∆u,

which connects the Laplacian ∆u with the p-Laplacian ∆pu = ∇ ·
(|∇u|p−2∇u) and the mean curvature operator −∆1u = − div

(

∇u
|∇u|

)

.

The formula has to be interpreted in the viscosity sense. Property (I)
follows by spherical symmetrization (Schwarz symmetrization), cf. [28,
p.90]. The ball is (essentially) the only optimal shape, cf [8]. For p = 2
this is the celebrated conjecture of Lord Rayleigh, proved by E. Krahn 5

and G. Faber. The asymptotic formula (VI) is postponed to Section 6.
Let us begin by discussing the uniqueness (III). The first eigenvalue is

simple. That is, all the first eigenfunctions in a fixed domain are merely
constant multiples of each other.

Theorem 6 The first eigenvalue is simple in any bounded domain.

Proof: Suppose that u and v are two first eigenfunctions. So are |u|
and |v|. Thus the situation is reduced to the case u > 0 and v > 0. As
Anane has observed in [2], the result would follow by certain balanced
calculations, if the function η = u− vpu1−p were, a priori, admissible as
test-function in

∫

Ω

|∇u|p−2 ∇u · ∇ηdx = λ1

∫

Ω

|u|p−2 uηdx

4The reader might find it strange that the property does not depend on p. The corresponding

result for the equation div
“

|∇u|p−2 ∇u
”

= −1 is that u1−1/p is a concave function.
5See ”Edgar Krahn 1894-1961”, a centenary volume edited by Š. Lumiste & J. Peetre, IOS
Press, Amsterdam 1994, pp. 81-106.
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and v − upv1−p in the similar equation for v. We use the modified test-
functions

η =
(u + ε)p − (v + ε)p

(u + ε)p−1
and

(v + ε)p − (u + ε)p

(v + ε)p−1
,

ε being a positive constant. Then

∇η =

{

1 + (p − 1)

(

v + ε

u + ε

)p}

∇u − p

(

v + ε

u + ε

)p−1

∇v

and, by symmetry, the gradient of the test-function in the corresponding
equation for v has a similar expression, yet with u and v interchanged.
Using the fact that u and v are bounded (Section 2), we easily see that

η ∈ W 1,p
0 (Ω).

Instead of reproducing the whole proof in [33] we write down the
calculations only for p = 2, that is, a non-linear proof of the linear case
is presented. Inserting the chosen test-functions into their respective
equations and adding these, we obtain the simple expression

(4.2)

∫

Ω

(

u2
ε + v2

ε

)

|∇ log uε −∇ log vε|2 dx

= λ1

∫

Ω

[

u

uε
− v

vε

]

(

u2
ε − v2

ε

)

dx,

where we have written uε = u(x)+ε and vε = v(x)+ε. As ε approaches
zero, it is plain that the right hand side tends to zero. By Fatou’s lemma

∫

Ω

(

u2 + v2
)

|∇ log u −∇ log v|2 dx = 0.

The integrand must be zero. Hence u∇v = v∇u a.e. Thus u = Cv or
v = Cu for some constant. This proves the case p = 2.

If p ≥ 2, then the inequality 6

|w2|p ≥ |w1|p + p |w1|p−2 w1 · (w2 − w1) +
|w2 − w1|p
2p−1 − 1

should be used. Take w2 = ∇ log vε and w1 = ∇ log uε. There is a
counterpart valid, when 1 < p < 2. For the details we refer to [33]. 2

As a byproduct of the proof we can conclude the following

Theorem 7 A positive eigenfunction is always a first eigenfunction.

6The inequality seems to be due to L. Evans, see [18, p. 250]. The best constant is not the
abovementioned 1/(2p−1 − 1). It has been determined in [ ].
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Proof: Suppose that v > 0 is an eigenfunction with the eigenvalue λ.
Let u > 0 denote the first eigenfunction. In the case p = 2 the previous
calculation yields that

∫

Ω

(

u2
ε + v2

ε

)

|∇ log uε −∇ log vε|2 dx =

∫

Ω

[

λ1
u

uε
− λ

v

vε

]

(

u2
ε − v2

ε

)

dx.

This exhibits that the right-hand member is non-negative. Hence, letting
ε tend to zero, we have

(λ1 − λ)

∫

Ω

(

u2 − v2
)

dx ≥ 0.

If λ 6= λ1, then λ > λ1 and

∫

Ω

(

u2 − v2
)

dx ≤ 0. This is an impossible

situation, since u can be replaced by 2u, 3u, . . .. We have proved that
λ = λ1. The case p 6= 2 is rather similar. 2

A simple proof of the simplicity of λ1 has recently been given by
Belloni and Kawohl, cf [11]. It is based on the admissible function

w =
(up + vp

2

)1/p

in the Rayleigh quotient. A short calculation yields

|∇w|p =
up + up

2

∣

∣

∣

∣

up∇ log u + vp∇ log v

up + vp

∣

∣

∣

∣

p

.

Because the positive quantities up/(up + vp) and vp/(up + vp) add up
to 1, we can use Jensen’s inequality for convex functions to obtain the
estimate

∣

∣

∣

∣

up∇ log u + vp∇ log v

up + vp

∣

∣

∣

∣

p

≤ up|∇ log u|p + vp|∇ log v|p
up + vp

.

Thus we have

|∇w|p ≤ 1

2
|∇u|p +

1

2
|∇v|p.

The inequality is strict at points where ∇ log u 6= ∇ log v. Now we can
conclude that

λ1 ≤

∫

Ω
|∇w|pdx

∫

Ω
wpdx

≤

1

2

∫

Ω
|∇u|pdx +

1

2

∫

Ω
|∇v|pdx

1

2

∫

Ω
updx +

1

2

∫

Ω
vpdx

= λ1.

If ∇ log u 6= ∇ log v in a set of positive measure, then we would have
a strict inequality above, which is a contradiction. This proves that u
and v are constant multiples of each other. — This elegant proof is not,
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as is were, capable of establishing that a positive eigenfunction is a first
one.

About the concavity of log u we refer directly to [48]. It is worth noting
that the first eigenfunction u itself is never concave, the one dimensional
case beeing an exception. In a ball in Rn even uα is concave for some α,
1/n < α < 1. In [36] I have conjectured that, among all convex domains,
the ball has the best concavity exponent. Even the linear case seems to
be unsettled.

The stability of the principal frequency λ1 = λ(p), when p
varies is rather intriguing. This topic is discussed in [35]. By the Hölder
inequality

pλ(p)
1
p < sλ(s)

1
s , when 1 < p < s < ∞,

so that the one-sided limits in

(4.3) lim
s→p−

λ(s) ≤ λ(p) = lim
s→p+

λ(s).

exist. The last equality is almost evident. Normalizing the eigenfunc-
tions so that ‖us‖s,Ω = 1 we actually have

lim
s→p+

∫

Ω

|∇us −∇up|p dx = 0

as s approaches p from above. When s approaches p from below, even
the adjusted version

(4.4) lim
s→p−

∫

Ω

|∇us −∇up|s dx = 0

is plainly false in irregular domains, when p ≤ n. However, (4.4) implies
that

(4.5) lim
s→p−

λ(s) = λ(p).

We think that (4.5) implies (4.4).
Given any p, 1 < p ≤ n, there is a bounded domain Ω in Rn such

that
lim

s→p+
λ(s) < λ(p),

and, a fortiori, (4.4) cannot hold for the normalized eigenfunctions.
The explanation is a rather interesting phenomenon. A sequence of
eigenfunctions us will converge to a function u ∈ W 1,p (Ω). One has

u ∈ W 1,s
0 (Ω) for every s < p. This u is a weak solution to the equation

div
(

|∇u|p−2 ∇u
)

+ λ |u|p−2 = 0 in Ω, except that it fails to be in the

right space W 1,p
0 (Ω). To cause such a delicate effect, one needs a closed

set Ξp such that caps(Ξp) = 0, when s < p, yet capp(Ξp) > 0. It is
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known how to construct such sets as generalized Cantor sets. The final
domain Ω will be of the form B \ Ξp, where B is a sufficiently large
ball containing Ξp in its interior. For a complete discussion of the ”p-
stability” we refer to our fairly technical paper in ”Potential Analysis”.
See also [26].

The question about variations of the domain, instead of of the ex-
ponent p, is relatively simple. Let Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ · · · be an exhaustion
of Ω,

Ω =

∞
⋃

j=1

Ωj.

Then

(4.6) lim
j→∞

λ
(p)
1 (Ωj) = λ

(p)
1 (Ω) ,

where the notation is evident. (By a remark in the book by Courant-
Hilbert, this is not true for the corresponding Neumann problem, when
p = 2. One has to define the admissible variations of the domain in a
careful way, when the normal derivative at the boundary is involved.)

To prove (4.6), we note that

λ
(p)
1 (Ω1) ≥ λ

(p)
1 (Ω2) ≥ · · · ≥ λ

(p)
1 (Ω)

Given ε > 0, there is a function ϕ ∈ C∞
0 (Ω) such that

λ
(p)
1 (Ω) >

∫

Ω

|∇ϕ|p dx

∫

Ω

|ϕ|p dx
− ε,

since λ
(p)
1 (Ω) is the infimum. Being a compact set, the support of ϕ is

covered by a finite number of the sets Ω1,Ω2, . . .. Hence suppϕ ⊂ Ωj for
j large enough. Thus

λ
(p)
1 (Ωj) ≤

∫

Ωj

|∇ϕ|p dx

∫

Ωj

|ϕ|p dx

=

∫

Ω

|∇ϕ|p dx

∫

Ω

|ϕ|p dx

so that

λ
(p)
1 (Ω) > λ

(p)
1 (Ωj) − ε

for all large j. It is plain that λ
(p)
1 (Ω) ≥ lim λ

(p)
1 (Ωj). This proves the

desired result.
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Indeed, extending the eigenfunctions uj ∈ W 1,p
0 (Ωj) as zero in Ω \Ωj

so that uj ∈ W 1,p
0 (Ω), the strong convergence ‖∇u − ∇uj‖p,Ω −→ 0

holds for the normalized eigenfunctions (that is, ‖uj‖p,Ω = 1). Here u is
the first eigenfunction in Ω. The proof is not difficult.

5. HIGHER EIGENVALUES

The operator −∆ has a discrete spectrum λ1 < λ2 ≤ λ3 ≤ · · · and
λk −→ ∞ as k −→ ∞. Each eigenvalue is repeated according to its
multiplicity. Weyl’s theorem about the asymptotic behaviour of the
eigenvalues states that

lim
k→∞

λ
n/2
k

k
=

Const.

|Ω| .

The corresponding eigenfunctions u1, u2, u3, . . . can be chosen to satisfy

〈uk, uj〉 =

∫

Ω

ukujdx = δij .

This orthogonality is the key to the linear case ∆u + λu = 0. We
recommend the classical book by Courant & Hilbert.

It is more difficult to prove that also the equation

div
(

|∇u|p−2 ∇u
)

+ λ |u|p−2 u = 0

has infinitely many eigenvalues. There are several methods that work.
However, the main open problem is quite the opposite. Are there more
eigenvalues than the chosen method produces? If so, how can one ex-
haust the spectrum. Can all the eigenvalues be numerated? To the
best of my knowledge the nonlinear spectrum has not been proved to be
discrete, not even when the domain Ω is a ball or a cube.

In order to describe how higher eigenvalues are produced we have to
introduce an auxiliary concept, the genus of Krasnoselskij. The proof
will be skipped. About the method we refer to [9], [46], and [50].

If A is a symmetric7 and closed subset of a Banach space, then its
genus γ(A) is defined as the smallest integer k for which there exists a
continuous odd mapping ϕ : A −→ Rk\{0}. Thus ϕ(v) = −ϕ(−v), when
v ∈ A. If no such integer exists, then we define γ(A) = ∞. Especially,
γ(A) = ∞, if A contains the origin, since ϕ(0) = 0 for odd mappings.
See [46] and [St, Chapter II] about this concept.

Let
∑

k denote the collection of all symmetric subsets A of W 1,p
0 (Ω)

such that γ(A) ≥ k and the set {v ∈ A| ‖v‖p,Ω = 1} is compact. The

7Symmetric means that −v ∈ A, if v ∈ A.
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numbers

(5.1) λk = inf
A∈

P

k

max
v∈A

∫

Ω

|∇v|p dx

∫

Ω

|v|p dx

are eigenvalues and there are infinitely many of them, cf. [21] and [6].
The fact that this minimax procedure yields eigenvalues is often ex-
plained through the Palais-Smale condition.

These “minimax eigenvalues” λ1 < λ2 ≤ λ3 · · · satisfy an estimate of
the type encountered in Weyl’s theorem. According to [21] there are two
positive constants depending only on n and p such that

c1

|Ω| ≤
λ

n
p

k

k
≤ c2

|Ω|

as k → ∞. See also [6]. Unfortunately, it is not known whether the

described procedure exhausts the spectrum. Are there other eigenvalues
than those listed in (5.1)? Therefore the asymptotic result is of limited
interest, so far.

As the notation in (5.1) indicates, λ1 is the first eigenvalue. As we
will see, λ1 is isolated. It is possible to show that λ2 is the second one.
An unpublished manuscript [4] of A. Anane and M. Tsouli contains
a minimax characterization of the second eigenvalue in terms of the
functional

I(v) =





∫

Ω

|∇v|p dx





2

−
∫

Ω
|v|p dx.

Their proof is easily adapted to the Rayleigh quotient: for k = 2 (5.1)
yields the second eigenvalue λ2, that is λ2 = min

λ<λ1

λ. No such identifi-

cation is yet known for eigenvalues higher than the second. The second
eigenvalue is not known to be isolated, when its multiplicity is ignored.

The nodal domains are defined as the connected components of the
sets {u > 0} and {u < 0}. See [14] and [1].

Theorem 8 Any eigenfunction has only a finite number of nodal do-

mains.

Proof: Let u be an eigenfunction corresponding to λ. If Nj denotes a
component of one of the sets {x ∈ Ω|u(x) > 0} and {x ∈ Ω|u(x) < 0},
then u ∈ W 1,p

0 (Nj). By the Sobolev inequality

|Nj| ≥ C(n, p)λ
−n

p .
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Summing up, we have

|Ω| ≥
∑

j

|Nj | ≥ C(n, p)λ
−n

p

∑

j

1

so that the number of nodal domains is bounded by a constant times
λn/p |Ω|. 2

Theorem 9 The first eigenvalue is isolated.8

Proof: Suppose that there is a sequence of eigenvalues λ′
k tending to λ1

(these are not supposed to be minimax eigenvalues). If uk denotes the
corresponding normalized eigenfunction, then

∫

Ω

|∇uk|p dx = λ′
k,

∫

Ω

|uk|p dx = 1.

By compactness arguments there are a subsequence and a function u ∈
W 1,p

0 (Ω) such that ∇ukj
⇀ ∇u weakly and ukj

→ u strongly in Lp (Ω).
By weak lower semicontinuity

∫

Ω

|∇u|p dx

∫

Ω

|u|p dx

≤ lim
j→∞

λ′
kj

= λ1

so that u is the first eigenfunction. Since u does not change signs, we
may take u > 0.

If λ′
k 6= λ1, then uk must change signs in Ω. Both sets Ω+

k = {uk > 0}
and Ω−

k = {uk < 0} are non-empty and their measures cannot tend to
zero, since

∣

∣Ω+
k

∣

∣ ≥ C(n, p)(λ′
k)

−n
p ,

∣

∣Ω−
k

∣

∣ ≥ C(n, p)(λ′
k)

−n
p .

This prevents ukj
from converging to a positive function in Lp (Ω). In-

deed, the sets

Ω+ = lim supΩ+
kj

, Ω− = lim supΩ−
kj

have positive measure by a well-known “Selection Lemma”. We may
assume that u = lim ukj

a.e. in Ω. Passing to suitable subsequences
we can show that u ≥ 0 a.e. in Ω+ and u ≤ 0 a.e. in Ω−. This is a
contradiction. 2

There are many more open problems about the spectrum of the p-
Laplacian than those that have been mentioned here, in passing. To

8For smooth domains this is credited to Anane, cf. [2].
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mention two more: Is every eigenvalue of finite multiplicity? What about
multiplicity in the situation with general boundary values? Consider the

equation div
(

|∇u|p−2 ∇u
)

+λ |u|p−2 u = 0 with given boundary values,

say ϕ. This has always at least one solution. Does it have several
solutions, if λ happens to be an eigenvalue? In the linear case one just
adds solutions to see this.

6. THE ASYMPTOTIC CASE

It is instructive to see what happens when p → ∞. Arcane phenomena
occur in this fascinating case. Let

λ(p) = inf
ϕ

∫

Ω

|∇ϕ|pdx

∫

Ω

|ϕ|pdx

= inf
ϕ

‖∇ϕ‖p
p

‖ϕ‖p
p

denote the principal frequency and write

(6.1) Λ∞ = inf
ϕ

‖∇ϕ‖∞
‖ϕ‖∞

,

where ϕ ∈ C∞
0 (Ω). It turns out that the distance function

δ(x) = dist(x, ∂Ω)

“solves” the minimization problem:

(6.2) Λ∞ =
‖∇δ‖∞
‖δ‖∞

.

To see this, notice that

|ϕ(x)| ≤ ‖∇ϕ‖∞δ(x)

by the Mean Value Theorem. Hence

‖∇ϕ‖∞
|ϕ(x)| ≥ 1

δ(x)
≥ 1

‖δ‖∞
=

‖∇δ‖∞
‖δ‖∞ ,

since|∇δ(x)| = 1 a.e. in Ω. Thus we conclude that

‖∇ϕ‖∞
‖ϕ‖∞

≥ ‖∇δ‖∞
‖δ‖∞

for each admissible ϕ. This proves (6.2).
However, the minimization problem often has too many solutions in

W 1,∞(Ω)
⋂

C(Ω) with boundary values 0. In order to define the genuine
∞-eigenfunctions, one has to find the limit equation of

div(|∇u|p−2∇u) + λ(p)|u|p−2u = 0
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as p → ∞. It is shown in [27] that the limit equation is

(6.3) max

{

Λ∞ − |∇u(x)|
u(x)

,∆∞u(x)

}

= 0

for positive solutions. (At each point x in Ω the larger of the two quan-
tities is equal to zero.) Here

(6.4) ∆∞u =
n

∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

is the so called ∞-Laplacian. Unfortunately, the second derivatives of the
solutions do not always exist. The above equation has to be interpreted
in the viscosity sense, because it does not have any weak formulation
with test-functions under the integral sign. We refer to [27] about all
this.

Definition 10 Let u ≥ 0 and u ∈ C(Ω). We say that u is a viscosity

solution of the equation (6.3 ), if

(i) whenever x0 ∈ Ω and ϕ ∈ C2(Ω) are such that u(x0) = ϕ(x0) and

u(x) < ϕ(x), when x 6= x0, then

Λ∞ − |∇ϕ(x0)|
ϕ(x0)

≥ 0 or ∆∞ϕ(x0) ≥ 0.

(ii) whenever x0 ∈ Ω and ϕ ∈ C2(Ω) are such that u(x0) = ϕ(x0) and

u(x) > ϕ(x), when x 6= x0, then

Λ∞ − |∇ϕ(x0)|
ϕ(x0)

≤ 0 and ∆∞ϕ(x0) ≤ 0.

Notice that each point requires its own family of test-functions.
The essential feature is that the difference u(x) − ϕ(x) attains its

extremum at the touching point x0, where the derivatives of the test-
function are to be evaluated.

For example, when Ω is the ball |x| < 1, the infinity ground state is

u(x) = 1 − |x|.

We have ∆∞u(x) = 0, when x 6= 0. The origin is the important point.
Here Λ∞ = 1 is determined. Since there are no test-functions touch-
ing from below at x0 = 0, condition (ii) is automatically regarded as
fullfilled. If the function

ϕ(x) = 1 + 〈a, x〉 + 0(|x|2)

touches from above, we must have

1 + 〈a, x〉 ≥ 1 − |x|
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as x → 0. Hence |a| ≤ 1 and so

Λ∞ − |∇ϕ(0)|
ϕ(0)

= 1 − |a|
1

≥ 0,

that is, condition (i) holds.
In passing, let me mention that in a square (cube) the distance func-

tion δ does not solve the equation. This means that it is not the limit
of the ground states up, as p → ∞. Recall (6.1) and (6.2).

As we observed

(6.5) Λ∞ =
1

max
x∈Ω

dist(x, ∂Ω)
.

Thus the principal frequency can be detected from the geometry: it is the
reciprocal number of the radius of the largest ball that can be inscribed in
the domain Ω. This is an advantage. For example, if Ω is the punctured
ball 0 < |x| < 1, then Λ∞ = 1/2. We should point out that all boundary

points are regular in the case p = ∞. The solution is zero even at isolated
boundary points! The equation

max

{

Λ − |∇u(x)|
u(x)

,∆∞u(x)

}

= 0

has a positive solution with zero boundary values only when Λ = Λ∞.
No other Λ will do. In this respect we have a typical eigenvalue.

Let us consider the formula in VI, Section 4.

Lemma 11 Λ∞ = lim
p→∞

p
√

λ(p).

Proof: Using the distance function as test-function in the Rayleigh quo-
tient, we have

p
√

λ(p) ≤ ‖∇δ‖p

‖δ‖p

and hence

lim sup
p→∞

p
√

λ(p) ≤ ‖∇δ‖∞
‖δ‖∞

= Λ∞.

To achieve the inequality

lim inf
p→∞

p
√

λ(p)) ≥ Λ∞

we use a compactness argument for the eigenfunctions up. For p large
enough

p
√

λ(p) =
‖∇up‖p

‖up‖p
< Λ∞ + 1.

With the normalization ‖up‖p = 1 the norms ‖∇up‖m are uniformly
bounded, when p ≥ m. Using a diagonalization procedure, we can select
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a subsequence upj that converges weakly in each W 1,q(Ω), q < ∞, and
uniformly in each Cα(Ω), α < 1, to a function denoted by u∞. By the
weak lower semicontinuity

‖∇u∞‖q

‖u∞‖q
≤ lim inf

j→∞

‖∇upj‖q

‖upj‖q
≤ lim inf

j→∞

‖∇upj‖pj |Ω|
1
q
− 1

pj

‖upj‖q

= lim inf
j→∞

λ(pj)
1/pj |Ω|

1
q
− 1

pj

‖upj‖q
≤ |Ω|

1
q

‖u∞‖q
lim inf
j→∞

λ(pj)
1/pj

Taking the normalization into account and letting q → ∞, we obtain

‖∇u∞‖∞
‖u∞‖∞

≤ lim inf
j→∞

λ(pj)
1/pj .

The left-hand side is ≥ Λ∞, because u∞ is admissible in the quotient.
The right-hand side can be replaced by lim inf λ(p)1/p, since we can begin
the construction with an arbitrary sequence of p’s. 2

Much more is known but there are also challenging open problems in
the case p = ∞. The interested reader can find some pieces of informa-
tion in P. Juutinen, P. Lindqvist & J. Manfredi: The infinity Laplacian:

examples and observations, Institut Mitag-Leffler, Report 26, 1999/2000.
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[26] L. HEDBERG & T. KILPELÄINEN: On the stability of Sobolev spaces with
zero boundary values, Mathematica Scandinavica 85, 1999, pp. 245–258.

[27] P. JUUTINEN & P. LINDQVIST & J. MANFREDI: The ∞-eigenvalue problem,
Archive for Rational Mechanics and Analysis 148, 1999, pp. 89–105.

[28] B. KAWOHL: Rearrangements and Convexity of Level Sets in PDE (Lecture
Notes in Mathematics 1150), Springer-Verlag, Heidelberg 1985.
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